首页    期刊浏览 2025年06月26日 星期四
登录注册

文章基本信息

  • 标题:Improved Image Classification Algorithm Based on Convolutional Neural Network
  • 本地全文:下载
  • 作者:Xin Li ; Luyu Dong ; Mengting Li
  • 期刊名称:Open Access Library Journal
  • 印刷版ISSN:2333-9705
  • 电子版ISSN:2333-9721
  • 出版年度:2021
  • 卷号:8
  • 期号:12
  • 页码:1-9
  • DOI:10.4236/oalib.1108228
  • 语种:English
  • 出版社:Scientific Research Pub
  • 摘要:This article mainly introduces the image classification algorithm research based on the improved convolution neural network and some improvement ideas for the research of the classification based on the convolution neural network. The VGG16 model was improved in this article. By adding a dropout layer and a feature extraction layer, and performing L2 regularization on the loss function at the end, it deepens the model depth and improves the fit of the entire model. The experimental results show that the improved model can greatly improve the detection accuracy rate 98.7% than the traditional CNN algorithm 96.97% on the cat and dog data set.
  • 关键词:Deep LearningImage ClassificationConvolutional Neural NetworkVGG16 Model
国家哲学社会科学文献中心版权所有