首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors
  • 本地全文:下载
  • 作者:Eunna Huh ; Jonathan Gallion ; Melina A. Agosto
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:51
  • DOI:10.1073/pnas.2113373118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance GPCRs and GPCR pathways are increasingly being implicated in human malignancies, placing them among the most promising cancer drug candidates. Our results reveal enrichment of highly impactful, recurrent GPCR mutations within cancers. We found that cognate mutations in selected class A GPCRs have deleterious effects on signaling function. The results also suggest that olfactory receptors, often considered inconsequential, display a nonrandom mutation pattern in tumors in which they are expressed. These findings support the idea that protein paralogs can act in parallel as members of an onco-group. G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or β-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.
  • 关键词:G protein-coupled receptor (GPCR); cancer; evolutionary action (EA); mutational signatures; β-arrestin
国家哲学社会科学文献中心版权所有