期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:4
DOI:10.1073/pnas.2115651119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Carbon isotopic analysis is among the most pervasive geochemical approaches because the fractionation of carbon isotopes produces a natural tracer of biological and chemical processes. Rover-based carbon isotopic analyses of sedimentary rocks on Mars have the potential to reveal modes of Martian carbon cycling. We report carbon isotopic values of the methane released during pyrolysis of samples obtained at Gale crater. The values show remarkable variation indicating different origins for the carbon evolved from different samples. Samples from multiple locations within Gale crater evolved methane with highly fractionated carbon isotopes. We suggest three routes by which highly fractionated carbon could be deposited on Mars, with each suggesting that Martian carbon cycling is quite distinct from that of the present Earth.
Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ
13C
VPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (−137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ
13C values less than −70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted
13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO
2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.