首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell
  • 本地全文:下载
  • 作者:Khayam Javed ; Jerome Jullien ; Gaurav Agarwal
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:4
  • DOI:10.1073/pnas.2116091119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance How differentiated cells such as muscle or nerve maintain their gene expression for prolonged times is currently elusive. Here, using Xenopus oocyte, we have shown that the stability of gene expression in nondividing cells may arise due to the local entrapment of transcriptional machinery to specific gene transcription start sites. We found that within the same nucleus active versus inactive versions of the same gene are spatially segregated through liquid–liquid phase separation. We further observe that silent genes are associated with RNA-Pol-II phosphorylated on Ser5 but fails to attract RNA-Pol-II elongation factors. We propose that liquid–liquid phase separation mediated entrapment of limiting transcriptional machinery factors maintain stable expression of some genes in nondividing cells. An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type–specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid–liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.
  • 关键词:entranscriptional regulationXenopusoocyteliquid–liquid phase separationAscl1stable gene expression
国家哲学社会科学文献中心版权所有