首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Oxidative regulation of chloroplast enzymes by thioredoxin and thioredoxin-like proteins in Arabidopsis thaliana
  • 本地全文:下载
  • 作者:Yuichi Yokochi ; Yuka Fukushi ; Ken-ichi Wakabayashi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:51
  • DOI:10.1073/pnas.2114952118
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Plants modulate photosynthesis activity in response to the surrounding environment. It is well known that the redox-responsive protein thioredoxin (Trx) activates photosynthesis-related enzymes in the light. However, the factors involved in deactivating them are not well understood. Recent in vitro experiments suggest that several Trx and Trx-like proteins serve as oxidation factors for Trx-targeted proteins; thus, we examined their functions in vivo. Consequently, we found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx, were involved in oxidative deactivation of photosynthesis-related enzymes (e.g., fructose-1,6-bisphosphatase, Rubisco activase, and the ATP synthase γ-subunit). Thus, this study reveals the functions of oxidation factors in vivo and elucidates the regulation system for photosynthesis in the dark. Thioredoxin (Trx) is a protein that mediates the reducing power transfer from the photosynthetic electron transport system to target enzymes in chloroplasts and regulates their activities. Redox regulation governed by Trx is a system that is central to the adaptation of various chloroplast functions to the ever-changing light environment. However, the factors involved in the opposite reaction (i.e., the oxidation of various enzymes) have yet to be revealed. Recently, it has been suggested that Trx and Trx-like proteins could oxidize Trx-targeted proteins in vitro. To elucidate the in vivo function of these proteins as oxidation factors, we generated mutant plant lines deficient in Trx or Trx-like proteins and studied how the proteins are involved in oxidative regulation in chloroplasts. We found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx (ACHT), seemed to serve as oxidation factors for Trx-targeted proteins, such as fructose-1,6-bisphosphatase, Rubisco activase, and the γ-subunit of ATP synthase. In addition, ACHT was found to be involved in regulating nonphotochemical quenching, which is the mechanism underlying the thermal dissipation of excess light energy. Overall, these results indicate that Trx and Trx-like proteins regulate chloroplast functions in concert by controlling the redox state of various photosynthesis-related proteins in vivo.
  • 关键词:redox regulation; oxidation; thioredoxin; thioredoxin-like protein; 2-Cys peroxiredoxin
国家哲学社会科学文献中心版权所有