摘要:The effect of temperature (25, 45, and 65 °C) on the gluten secondary structure was investigated by using Fourier transform infrared (FTIR) spectroscopy and modulation of disulfide and hydrogen bonds contributions (100 ppm ascorbic acid (AA), 0.6% diacetyl tartaric acid ester of monoglycerides (DATEM), and 0.25 mM dithiothreitol (DTT)). The results showed that additives heated at 65 °C altered most of the gluten matrix formation by changing structural secondary structures compared to the secondary structures of native gluten (control). The content of random coils, α-helices, and β-sheet of gluten increased, while the extent of β-turns and antiparallel β-sheets decreased, which led to the transformation to a more stable secondary conformation. In addition, the rheological properties (%creep strain) revealed that gluten deformation increased during the heating process with all of the additives. The chemometric method could quantitate an overall alteration of gluten polymerization and gluten matrix formation during heating with additive treatments.
关键词:englutendiacetyl tartaric acid ester of monoglyceridesdithiothreitolascorbic acidtemperatureFTIR spectroscopy