首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species
  • 本地全文:下载
  • 作者:Wen Gao ; Bin Xu ; Yizhi Zhang
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • DOI:10.3390/nu14030541
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Oxidative stress plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Baicalin has been shown to exert protective effects in various liver diseases. The mechanism of baicalin’s antioxidative effect in NAFLD is currently unclear. The aim of this study was to investigate the effects and mechanisms of baicalin on oxidative stress in a new tissue-engineered liver model of NAFLD. The 3D model of NAFLD was induced by a fat-supplemented medium (fatty acids, FFA group) for 8 days and baicalin was administered on the 5th day. CCK-8 assay showed that baicalin at concentrations below 100 μM had no obvious cytotoxicity. Baicalin inhibited apoptosis and lactate dehydrogenase release in the FFA group. Baicalin reduced the levels of reactive oxygen species and malondialdehyde induced by FFA, and increased superoxide dismutase and glutathione amounts. However, it did not upregulate nuclear erythroid 2-related factor 2 compared with the FFA group. Mitochondrial morphology was partially restored after baicalin treatment, and ATP5A expression and mitochondrial membrane potential were increased. The superoxide anion scavenging ability of baicalin was enhanced in a dose-dependent manner. In summary, baicalin reduces oxidative stress and protects the mitochondria to inhibit apoptosis in the 3D NAFLD model via its own antioxidant activity.
  • 关键词:enbaicalinnonalcoholic fatty liver diseasetissue-engineered liveroxidative stress
国家哲学社会科学文献中心版权所有