首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Reevaluation of the role of LIP-1 as an ERK/MPK-1 dual specificity phosphatase in the C. elegans germline
  • 本地全文:下载
  • 作者:Debabrata Das ; Jacob Seemann ; David Greenstein
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:3
  • DOI:10.1073/pnas.2113649119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The RAS–ERK pathway is critical for metazoan development. In development, ERK activity is regulated by a balance of phosphorylation of ERK by MEK (MAPK kinase) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 family member, was previously suggested to regulate MPK-1/ERK activity by dephosphorylating MPK-1 in the Caenorhabditis elegans germline, based on LIP-1's mutant phenotype in the germline and its DUSP role in vulval development. However, our investigations demonstrate that LIP-1 does not function as an MPK-1 DUSP in the germline and likely regulates germline functions through distinct targets. Our results present a cautionary note about misinterpreting similar mutant phenotypes caused by mutations in different genes and assuming that genes function similarly in different tissues. The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/ let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1–dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.
  • 关键词:enMPK-1 ERKLIP-1 DUSPC. elegansgermline
国家哲学社会科学文献中心版权所有