首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A new biased regression estimator: Theory, simulation and application
  • 本地全文:下载
  • 作者:Issam Dawoud ; Adewale F. Lukman ; Abdul-Rahaman Haadi
  • 期刊名称:Scientific African
  • 印刷版ISSN:2468-2276
  • 出版年度:2022
  • 卷号:15
  • 页码:1-11
  • DOI:10.1016/j.sciaf.2022.e01100
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe linear regression model explores the relationship between a response variable and one or more independent variables. The ordinary least squared estimator is usually adopted to estimate the parameters of the model when the independent variables are uncorrelated. However, the estimator performance dropped when the independent variables are correlated- a situation known as multicollinearity. This paper developed a new biased regression estimator based on a one-parameter and two-parameter estimators as an alternative to the ordinary least squares estimator when the independent variables are linearly dependent. Theoretical comparison, simulation and real-life data were carried out. The results revealed that the new estimator dominates other estimators considered in this study.
  • 关键词:KeywordsTwo-parameter estimatorLiu estimatorMulticollinearityRidge regression estimator
国家哲学社会科学文献中心版权所有