期刊名称:Eastern-European Journal of Enterprise Technologies
印刷版ISSN:1729-3774
电子版ISSN:1729-4061
出版年度:2022
卷号:1
期号:1
页码:24-28
DOI:10.15587/1729-4061.2022.252930
语种:English
出版社:PC Technology Center
摘要:There are several applications in the aerospace, automotive and energy industries, for example, that often require high fidelity modeling or problems involving structural mechanics, heat transfer, or electromagnetic. Finite element analysis (FEA) is a popular method for solving the underlying partial differential equations (PDE) for these problems. 3D finite element analysis or 3D-FEA accurately captures the physics of these problems. The relevance of this study is to show how to set up finite element analysis (FEA) simulations and leverage the model of the environment to solve problems typically encountered by engineers and scientists in a variety of fields such as aerospace, automotive and energy. This study analyzes the behavior of mechanical components under different physical effects and shows a thermal analysis of a commercial KUKA YouBot robotic arm component by finding temperature distributions, figures, code, and test results for multiple materials. The developed model allows understanding and assessing the responsive component under loading, vibration or heat and determining deformation stresses among many things to select the best material and even prevent failure or undesired resonance as an example. These systems are typically modeled using partial differential equations or PDEs that capture the underlying physics of the problem and FEA is just one of the most common methodologies to solve this type of equation. The linear regression model can be a good predictive model that represents the relationship between thermal conductivity and max temperature to avoid undesired performance of the robotic arm.
关键词:finite element analysis (FEA);heat transfer;partial differential equations (PDE);robotic gripper pivot