期刊名称:Eastern-European Journal of Enterprise Technologies
印刷版ISSN:1729-3774
电子版ISSN:1729-4061
出版年度:2020
卷号:3
期号:1
页码:23-29
DOI:10.15587/1729-4061.2020.202441
语种:English
出版社:PC Technology Center
摘要:Three-dimensional geometric modeling of the forming process of cylindrical parts during grinding with crossed axes of it and the wheel has been carried out. Grinding of shafts, which are widely used in the automotive industry, machine tool industry, and rolls of strip rolling mills has been carried out at one location with a wide abrasive wheel oriented relative to the workpiece. Based on the obtained spatial model of shaping and removal of the allowance, the distribution of the allowance along the cutting area of the tool during grinding with an oriented tool has been studied. It has been shown that on the peripheral cutting section of the grinding wheel, roughing, finishing and calibration are combined.A modular three-dimensional model of dressing the grinding wheel peripheral section with a single-chip diamond tool during grinding with crossed axes of the tool and part using standardized modules of the dressing tool, orientation and shaping has been developed. Based on the presented model, the geometric accuracy of the tool peripheral section shaping after its dressing has been studied. Based on the presented model, the geometric accuracy of the tool peripheral section shaping after its dressing has been studied. In order to obtain the necessary microgeometry and cutting properties of abrasive wheels, in accordance with the features of processing the rolls of strip rolling mills with an oriented tool, dressing with a reduced feed rate of the dressing tool to the calibration section is proposed. The feed rate of the dressing single-chip tool depends on the value of allowance. Different feed rates of the dressing tool provide different development of the tool cutting peripheral section. This, in turn, increases the intervals between dressing processes of the grinding wheel, which operates in the blunt mode. Therefore, the resistance is increased, and the cost of processing is reduced. Implementation of the proposed method of wheel dressing during single-pass grinding with crossed axes of the tool and cylindrical part will provide high accuracy, quality of the machined surfaces, and also significantly increase the efficiency and productivity of processing. The developed dressing method can be applied for round grinding processes with crossed axes of the workpiece and abrasive wheels.
关键词:two-side face grinding;crossed axes;wheel dressing;wheel surface development;cylindrical parts