期刊名称:Eastern-European Journal of Enterprise Technologies
印刷版ISSN:1729-3774
电子版ISSN:1729-4061
出版年度:2020
卷号:3
期号:5
页码:6-18
DOI:10.15587/1729-4061.2020.206114
语种:English
出版社:PC Technology Center
摘要:A possibility of assessing the level of wear of artillery barrels by acoustic fields of shots was studied. Despite the importance of knowledge on the current barrel state, existing methods of wear assessment are not sufficiently prompt. These methods give rather rough estimates of wear or require expensive equipment. Unlike the known methods, the method proposed in the article is prompt, does not require large expenses, can be combined with a training firing, and is easily automated. Characteristics of the shock and muzzle waves generated by a gunshot were studied and differences in their parameters for barrels without wear and those with a critical wear level were shown. Initial shell velocity serves as a criterion indicator of wear. It was shown that according to the acoustic characteristics, a shot from the barrel having any degree of wear is equivalent to a shot from a gun of a smaller caliber. A computational experiment was conducted on real acoustic signals recorded during the firing of a 155?mm howitzer. Informative attributes of acoustic signals from shots were selected. They make it possible to automatically classify barrels into two classes: barrels suitable for use and barrels with wear exceeding the critical level. It was shown that the application of the support vector method (SVM) makes it possible to confidently classify barrels by the level of their wear based on the temporal and spectral attributes of the shock and muzzle waves. A cumulative analysis of spectral characteristics was used in the analysis of acoustic signals from shots. This has a significantly increased likelihood of correct barrel classification. The results are useful for practical use in artillery units in the field conditions. The study results enable the development of an automated system for assessing the barrel condition with high promptness. This ensures sufficient accuracy in assessing the level of barrel wear in the combat practice.