期刊名称:Eastern-European Journal of Enterprise Technologies
印刷版ISSN:1729-3774
电子版ISSN:1729-4061
出版年度:2020
卷号:4
期号:5
页码:78-87
DOI:10.15587/1729-4061.2020.210378
语种:English
出版社:PC Technology Center
摘要:A method has been developed for the combined de-orbiting of large-size objects of space debris from low-Earth orbits using an electro-rocket propulsion system as an active de-orbiting means.A principal de-orbiting technique has been devised, which takes into consideration the patterns of using an electric rocket propulsion system in comparison with the sustainer rocket propulsion system.A procedure for determining the parameters of the de-orbiting scheme has been worked out, such as the minimum total speed and the time of the start of the de-orbiting process, which ensures its achievement. The proposed procedure takes into consideration the impact exerted on the process of the de-orbiting by the ballistic factor of the object, the height of the initial orbit, and the phase of solar activity at the time of the de-orbiting onset. The actual time constraints on battery discharge have been accounted for, as well as on battery charge duration, and active operation of the control system.The process of de-orbiting a large-size object of space debris has been simulated by using the combined method involving an electro-rocket propulsion system. The impact of the initial orbital altitude, ballistic coefficient, and the phase of solar activity on the energy costs of the de-orbiting process have been investigated. The dependences have been determined of the optimal values of a solar activity phase, in terms of energy costs, at the moment of the de-orbiting onset, and the total velocity, required to ensure the de-orbiting, on the altitude of the initial orbit and ballistic factor. These dependences are of practical interest in the tasks of designing the means of the combined de-orbiting involving an electric rocket propulsion system. The dependences of particular derivatives from the increment of a velocity pulse to the gain in the ballistic factor on the altitude of the initial orbit have been established. The use of these derivatives is also of practical interest to assess the effect of unfolding an aerodynamic sailing unit.
关键词:large-sized space debris;combined de-orbiting;electric rocket propulsion system;low orbits