首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:The kinetics of the processes of extracting the Cu(II) and Fe(III) ions from aqueous solutions by the biosorbents based on pea processing waste
  • 本地全文:下载
  • 作者:Оlena Kovalenko ; Viktoriia Novoseltseva ; Oleh Vasyliv
  • 期刊名称:Eastern-European Journal of Enterprise Technologies
  • 印刷版ISSN:1729-3774
  • 电子版ISSN:1729-4061
  • 出版年度:2020
  • 卷号:5
  • 期号:10
  • 页码:14-25
  • DOI:10.15587/1729-4061.2020.215043
  • 语种:English
  • 出版社:PC Technology Center
  • 摘要:Effective purification of natural and wastewater from heavy metals is a relevant environmental and national-economic problem. It can be solved by using plant-waste-derived biosorbents in water treatment technologies. They are formed in large quantities by agricultural and food enterprises. Taking into consideration data on the peculiarities of mechanical and thermal effects on the components of plant biomass, the techniques have been substantiated to obtain biosorbents from pea processing waste. It has been shown that the dehydration of the waste, its carbonization, and the crushing of char can produce biosorbents with different sorption properties. The nature of influence exerted by the process parameters of the Cu(II) and Fe(III) ions biosorption from model aqueous solutions on a change in the concentration of the solution, the value, and adsorption uptake has been established. In particular, the effect of the process duration, the type and initial content of metal in the solution, dosage, and a biosorbent production technique was studied. It has been shown that 38 to 98?% of heavy metals can be removed from solutions at their initial concentration between 2 and 20?mg/dm3 and a biosorbent dosage between 1 and 30?g/dm3. It was found that char is more efficient at removing heavy metals. It was also determined that the biosorbents made from pea processing waste are better at removing the Cu(II) ions from aqueous solutions than the Fe(III) ions. The generalization of the results of kinetic research is represented in the form of a multifactor regression equation. The equation makes it possible to calculate a change in the concentration of heavy metal in the solution depending on its initial concentration, the duration of the biosorption process, and the dosage of a biosorbent. For the mathematical notation of the experimental adsorption isotherms, values of the coefficients in a Langmuir equation have been determined. The derived equations could make it possible to optimize the technological parameters of the process.
  • 关键词:aqueous solutions;heavy metals;plant waste;biosorbents;kinetics;adsorption isotherms
国家哲学社会科学文献中心版权所有