期刊名称:Eastern-European Journal of Enterprise Technologies
印刷版ISSN:1729-3774
电子版ISSN:1729-4061
出版年度:2020
卷号:6
期号:7
页码:71-79
DOI:10.15587/1729-4061.2020.217747
语种:English
出版社:PC Technology Center
摘要:This paper reports a study into the movement of vibratory machines for various technological purposes that determined their stable zones. These zones warrant that the predetermined parameters of energy saving and energy-efficient mode are maintained. The structural scheme of energy transmission within the elements of a vibratory machine has been built. It is common for any design of the vibratory machine and its operating modes. The machine estimation scheme has been constructed taking into consideration a technological load, which is a certain manufacturing environment or a material subject to processing based on the appropriate technology. Underlying the motion equations built is a substantiated discrete-continual model of the vibratory machine and processing environment. The estimation scheme takes into consideration possible structural solutions for a vibratory machine whose movement modes are harmonious or impact-vibrational. The adopted scheme is a resonance vibration-impact system. This study into the movement and establishing the zones of stability has been adapted to simpler and more complex systems by reducing a combined discrete-continual model to the discrete one. The result reveals a qualitative pattern of the vibratory machine movement ensuring the specified mode of its operation. It was found that at the predefined frequency of impacts and weight of a working body, the efficiency of the impact-vibratory machine is determined by the impact speed. The distribution of the basic parameters of such vibration systems has been estimated; stability cards for different zones have been built.This very approach opens up new possibilities for designing highly efficient vibration equipment. A stable resonance mode makes it possible to significantly reduce the energy cost of the manufacturing process and warrant the rational parameters of vibratory machine operation specified by the technology. The results obtained were applied for the development of methods for calculating and constructing a new class of vibratory machines that implement appropriate energy-saving stable zones of the workflow.
关键词:vibratory machine;discrete and continual models;modes;parameters;stability zones