首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Biome boundary maintained by intense belowground resource competition in world’s thinnest-rooted plant community
  • 本地全文:下载
  • 作者:Mingzhen Lu ; William J. Bond ; Efrat Sheffer
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:9
  • DOI:10.1073/pnas.2117514119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The distribution and stability of biomes are critical for understanding, modeling, and managing the land biosphere. While studies have emphasized abiotic factors such as climate, geology, or fire regimes, we here identify a biological mechanism—plant–plant competition for belowground resources—as critical for maintaining the boundary between the Fynbos and Afrotemperate Forest biomes in South Africa. We demonstrate an apparent general mechanism in which local competition triggers a biome-scale feedback between plant traits and soil resources, which, in turn, stabilizes the biome boundary by allowing plants to maintain their own preferred soil conditions. Our findings are of general importance for understanding the organization of biodiversity across landscapes, for managing alien plant invasions, and for modeling the future of biome boundaries. Recent findings point to plant root traits as potentially important for shaping the boundaries of biomes and for maintaining the plant communities within. We examined two hypotheses: 1) Thin-rooted plant strategies might be favored in biomes with low soil resources; and 2) these strategies may act, along with fire, to maintain the sharp boundary between the Fynbos and Afrotemperate Forest biomes in South Africa. These biomes differ in biodiversity, plant traits, and physiognomy, yet exist as alternative stable states on the same geological substrate and in the same climate conditions. We conducted a 4-y field experiment to examine the ability of Forest species to invade the Fynbos as a function of growth-limiting nutrients and belowground plant–plant competition. Our results support both hypotheses: First, we found marked biome differences in root traits, with Fynbos species exhibiting the thinnest roots reported from any biome worldwide. Second, our field manipulation demonstrated that intense belowground competition inhibits the ability of Forest species to invade Fynbos. Nitrogen was unexpectedly the resource that determined competitive outcome, despite the long-standing expectation that Fynbos is severely phosphorus constrained. These findings identify a trait-by-resource feedback mechanism, in which most species possess adaptive traits that modify soil resources in favor of their own survival while deterring invading species. Our findings challenge the long-held notion that biome boundaries depend primarily on external abiotic constraints and, instead, identify an internal biotic mechanism—a selective feedback among traits, plant–plant competition, and ecosystem conditions—that, along with contrasting fire regime, can act to maintain biome boundaries.
  • 关键词:enbiome boundaryresource competitionroot traitsnitrogentrait-by-resource feedback
国家哲学社会科学文献中心版权所有