首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Fabrication of Wearable PDMS Device for Rapid Detection of Nucleic Acids via Recombinase Polymerase Amplification Operated by Human Body Heat
  • 本地全文:下载
  • 作者:Kieu The Loan Trinh ; Nae Yoon Lee
  • 期刊名称:Biosensors
  • 电子版ISSN:2079-6374
  • 出版年度:2022
  • 卷号:12
  • 期号:2
  • DOI:10.3390/bios12020072
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Pathogen detection by nucleic acid amplification proved its significance during the current coronavirus disease 2019 (COVID-19) pandemic. The emergence of recombinase polymerase amplification (RPA) has enabled nucleic acid amplification in limited-resource conditions owing to the low operating temperatures around the human body. In this study, we fabricated a wearable RPA microdevice using poly(dimethylsiloxane) (PDMS), which can form soft—but tight—contact with human skin without external support during the body-heat-based reaction process. In particular, the curing agent ratio of PDMS was tuned to improve the flexibility and adhesion of the device for better contact with human skin, as well as to temporally bond the microdevice without requiring further surface modification steps. For PDMS characterization, water contact angle measurements and tests for flexibility, stretchability, bond strength, comfortability, and bendability were conducted to confirm the surface properties of the different mixing ratios of PDMS. By using human body heat, the wearable RPA microdevices were successfully applied to amplify 210 bp from Escherichia coli O157:H7 ( E. coli O157:H7) and 203 bp from the DNA plasmid SARS-CoV-2 within 23 min. The limit of detection (LOD) was approximately 500 pg/reaction for genomic DNA template ( E. coli O157:H7), and 600 fg/reaction for plasmid DNA template (SARS-CoV-2), based on gel electrophoresis. The wearable RPA microdevice could have a high impact on DNA amplification in instrument-free and resource-limited settings.
  • 关键词:enwearable RPA microdevicepoly(dimethylsiloxane) (PDMS)human body heatrecombinase polymerase amplification (RPA)
国家哲学社会科学文献中心版权所有