首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Epigenetic MRI: Noninvasive imaging of DNA methylation in the brain
  • 本地全文:下载
  • 作者:Fan Lam ; James Chu ; Ji Sun Choi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:10
  • DOI:10.1073/pnas.2119891119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Dynamic epigenetic activity is a fundamental mechanism underpinning how the brain changes its function during development and aging and in response to environmental and disease stimuli. We developed a technology called epigenetic MRI (eMRI) that enables noninvasive imaging of DNA methylation in the brain, a major epigenetic mechanism. eMRI reveals strong regional differences in global DNA methylation in pig brains, a model with stronger resemblance to human brains than are rodents. Given the noninvasive nature of eMRI, our results pave the way for a DNA-methylation imaging paradigm for living human brains. We expect eMRI to enable many studies to unravel the molecular control of brain function and disease. Both neuronal and genetic mechanisms regulate brain function. While there are excellent methods to study neuronal activity in vivo, there are no nondestructive methods to measure global gene expression in living brains. Here, we present a method, epigenetic MRI (eMRI), that overcomes this limitation via direct imaging of DNA methylation, a major gene-expression regulator. eMRI exploits the methionine metabolic pathways for DNA methylation to label genomic DNA through 13C-enriched diets. A 13C magnetic resonance spectroscopic imaging method then maps the spatial distribution of labeled DNA. We validated eMRI using pigs, whose brains have stronger similarity to humans in volume and anatomy than rodents, and confirmed efficient 13C-labeling of brain DNA. We also discovered strong regional differences in global DNA methylation. Just as functional MRI measurements of regional neuronal activity have had a transformational effect on neuroscience, we expect that the eMRI signal, both as a measure of regional epigenetic activity and as a possible surrogate for regional gene expression, will enable many new investigations of human brain function, behavior, and disease.
  • 关键词:engene expressionDNA methylationisotope labelingNMR spectroscopyspectroscopic imaging
国家哲学社会科学文献中心版权所有