期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:9
DOI:10.1073/pnas.2119659119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Entropic outlier sparsification (EOS) is proposed as a cheap and robust computational strategy for learning in the presence of data anomalies and outliers. EOS dwells on the derived analytic solution of the (weighted) expected loss minimization problem subject to Shannon entropy regularization. An identified closed-form solution is proven to impose additional costs that depend linearly on statistics size and are independent of data dimension. Obtained analytic results also explain why the mixtures of spherically symmetric Gaussians—used heuristically in many popular data analysis algorithms—represent an optimal and least-biased choice for the nonparametric probability distributions when working with squared Euclidean distances. The performance of EOS is compared to a range of commonly used tools on synthetic problems and on partially mislabeled supervised classification problems from biomedicine. Applying EOS for coinference of data anomalies during learning is shown to allow reaching an accuracy of
97
%
±
2
%
when predicting patient mortality after heart failure, statistically significantly outperforming predictive performance of common learning tools for the same data.