首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss
  • 本地全文:下载
  • 作者:Xiaolong Fu ; Peipei Li ; Linqing Zhang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:10
  • DOI:10.1073/pnas.2107357119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The mechanistic target of rapamycin (mTOR) plays a central role in growth, metabolism, and aging. It is assembled into two multiprotein complexes, namely, mTORC1 and mTORC2. We previously demonstrated the efficacy of sirolimus in ARHL in mice by decreasing mTORC1. However, the aspect of mTORC2 regulation in the cochlea is poorly characterized. Herein, based on pharmacological and genetic interventions, we found that a high dose of sirolimus resulted in severe hearing loss by reducing the mTORC2/AKT signaling pathway in the cochlea. Furthermore, selective activation of mTORC2 could protect against hearing loss induced by acoustic trauma and cisplatin-induced ototoxicity. Hence, the therapeutic activation of mTORC2 in conjunction with decreasing mTORC1 might represent a promising and effective strategy in preventing hearing loss. The Food and Drug Administration–approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.
  • 关键词:enmTORC2hearinghair cells
国家哲学社会科学文献中心版权所有