首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen Metarhizium anisopliae
  • 本地全文:下载
  • 作者:Yundan Wang ; Xiwen Tong ; Shenglei Yuan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:6
  • DOI:10.1073/pnas.2120835119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Ecological immunology addresses the interactions between host immunity and the environment. Locusts display density-dependent phase transitions between solitary and gregarious locusts. In control practices and laboratory bioassays, gregarious locusts always exhibit stronger resistance to fungal pathogens than solitary locusts. However, few studies have investigated the mechanism of altered immune switch in locusts. Here, we combined mathematical simulation and experimental studies to show that gregarious locusts inhibit tumor necrosis factor (TNF) to alter immune defense by enhancing humoral defense and reducing cellular defense, and high levels of TNF reduce the survival of solitary locusts. Our study provides an important cue for understanding cellular immunity variations in response to different population densities and for improving the control efficacy of locust plagues. Changes in population density lead to phenotypic differentiation of solitary and gregarious locusts, which display different resistance to fungal pathogens; however, how to regulate their cellular immune strategies remains unknown. Here, our stochastic simulation of pathogen proliferation suggested that humoral defense always enhanced resistance to fungal pathogens, while phagocytosis sometimes reduced defense against pathogens. Further experimental data proved that gregarious locusts had significantly decreased phagocytosis of hemocytes compared to solitary locusts. Additionally, transcriptional analysis showed that gregarious locusts promoted immune effector expression ( gnbp1 and dfp) and reduced phagocytic gene expression ( eater) and the cytokine tumor necrosis factor (TNF). Interestingly, higher expression of the cytokine TNF in solitary locusts simultaneously promoted eater expression and inhibited gnbp1 and dfp expression. Moreover, inhibition of TNF increased the survival of solitary locusts, and injection of TNF decreased the survival of gregarious locusts after fungal infection. Therefore, our results indicate that the alerted expression of TNF regulated the immune strategy of locusts to adapt to environmental changes.
  • 关键词:enecological immunologytumor necrosis factorcellular defensesdensity-dependent prophylaxis
国家哲学社会科学文献中心版权所有