首页    期刊浏览 2024年07月16日 星期二
登录注册

文章基本信息

  • 标题:Protein kinase Cγ in cerebellar Purkinje cells regulates Ca 2+-activated large-conductance K + channels and motor coordination
  • 本地全文:下载
  • 作者:Masashi Watanave ; Nobutaka Takahashi ; Nobutake Hosoi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:7
  • DOI:10.1073/pnas.2113336119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The cerebellum, the site where protein kinase C (PKC) was discovered, contains the highest amount of PKCγ in the central nervous system. PKCγ in the cerebellum is exclusively confined to Purkinje cells (PCs), sole outputs from the cerebellar cortex. Systemic PKCγ-knockout mice show impaired motor coordination; however, the cause of motor defects remains unknown. Here we show that activation of PKCγ suppresses the Ca 2+-activated large-conductance K + (BK) channels located along the PC dendrites. A consequential increase in the membrane resistance attenuates electrical signal decay during propagation, resulting in an altered complex spike waveform. Our results suggest that synaptically activated PKCγ in PCs plays a critical role in motor coordination by negative modulation of BK currents. The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity–dependent manner, while normal motor coordination in mature Prkcg fl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcg fl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca 2+-activated large-conductance K + (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.
  • 关键词:enmotorkinasedendritic computation
国家哲学社会科学文献中心版权所有