首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers
  • 本地全文:下载
  • 作者:Rahul Roy ; Nickolas Moreno ; Stephen A. Brockman
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:5
  • DOI:10.1073/pnas.2114420119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Beyond sugars, many types of nectar solutes play important ecological roles; however, the molecular basis for the diversity of nectar composition across species is less explored. One rare trait among flowering plants is the production of colored nectar, which may function to attract and guide prospective pollinators. Our findings indicate convergent evolution of a red-colored nectar has occurred across two distantly related plant species. Behavioral data show that the red pigment attracts diurnal geckos, the likely pollinator of one of these plants. These findings join a growing list of examples of distinct biochemical and molecular mechanisms underlying evolutionary convergence and provide a fascinating system for testing how interactions across species drive the evolution of novel pigments in an understudied context. Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar’s red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon. We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.
  • 关键词:ennectarnectariesgeckoNesocodonJaltomata
国家哲学社会科学文献中心版权所有