首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Performance evaluation of modified adaptive Kalman filters, least means square and recursive least square methods for market risk beta and VaR estimation
  • 本地全文:下载
  • 作者:Eni Kusumaningtyas ; Raphaella Widiastuti ; Harsi Dewantari Kusumaningrum
  • 期刊名称:Quantitative Finance and Economics
  • 电子版ISSN:2573-0134
  • 出版年度:2019
  • 卷号:3
  • 期号:1
  • 页码:124-144
  • DOI:10.3934/QFE.2019.1.124
  • 语种:English
  • 出版社:AIMS Press
  • 摘要:Adaptive Kalman Filters (AKFs) are well known for their navigational applications. This work bridges the gap in the evolution of AKFs to handle parameter inconsistency problems with adaptive noise covariances. The focus is to apply proposed techniques for beta and VaR estimation of assets. The empirical performance of the proposed filters are compared with the standard least square family and KF with respect to VaR backtesting, expected shortfall analysis and in-sample forecasting performance analysis using Indian market data. Results show that the Modified AKFs are performing at par with the bench mark even with these adaptive noise covariance assumptions.
  • 关键词:adaptive estimation;noise covariance adaptation;recursive least square;least mean square;modified AKF;market risk;beta;value-at-Risk
国家哲学社会科学文献中心版权所有