首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:On central identities equipped with skew Lie product involving generalized derivations
  • 本地全文:下载
  • 作者:Shakir Ali ; Mohammad Salahuddin Khan ; Mohammed Ayedh
  • 期刊名称:Journal of King Saud University - Science
  • 印刷版ISSN:1018-3647
  • 出版年度:2022
  • 卷号:34
  • 期号:3
  • 页码:1-7
  • DOI:10.1016/j.jksus.2022.101860
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractLetRbe a*-ring. For anyx,y∈R, we denote the skew Lie product ofxandyby▿[x,y]=xy-yx∗. An additive mappingF:R→Ris called a generalized derivation if there exists a derivationdsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. The objective of this paper is to chracterize generalized derivations and to describe the structure of prime rings with involution*involving skew Lie product. In particular, we prove that ifRis a 2-torsion free prime ring with involution*of the second kind and admits a generalized derivation(F,d)such that▿[x,F(x∗)]±▿[x,x∗]∈Z(R)for allx∈R, thenRis commutative orF=∓IR, whereIRis the identity mapping ofR. Moreover, some related results are also obtained. Finally, we provide two examples to prove that the assumed restrictions on our main results are not superfluous.
  • 关键词:KeywordsPrime ringInvolutionSkew Lie productGeneralized derivation
国家哲学社会科学文献中心版权所有