期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:11
DOI:10.1073/pnas.2113074119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
With obesity on the rise, there is a growing appreciation for intracellular lipid droplet (LD) regulation. Here, we show how saturated fatty acids (SFAs) reduce fat storage–inducing transmembrane protein 2 (FIT2)–facilitated, pancreatic β cell LD biogenesis, which in turn induces β cell dysfunction and death, leading to diabetes. This mechanism involves direct acylation of FIT2 cysteine residues, which then marks the FIT2 protein for endoplasmic reticulum (ER)–associated degradation. Loss of β cell FIT2 and LDs reduces insulin secretion, increases intracellular ceramides, stimulates ER stress, and exacerbates diet-induced diabetes in mice. While palmitate and stearate degrade FIT2, unsaturated fatty acids such as palmitoleate and oleate do not, results of which extend to nutrition and diabetes.
Western-type diets are linked to obesity and diabetes partly because of their high–saturated fatty acid (SFA) content. We found that SFAs, but not unsaturated fatty acids (USFAs), reduced lipid droplets (LDs) within pancreatic β cells. Mechanistically, SFAs, but not USFAs, reduced LD formation by inducing S-acylation and proteasomal, mediated degradation of fat storage–inducing transmembrane protein 2 (FIT2), an endoplasmic reticulum (ER) resident protein important for LD formation. Targeted ablation of FIT2 reduced β cell LD numbers, lowered β cell ATP levels, reduced Ca
2+ signaling, dampened vesicle exocytosis, down-regulated β cell transcription factors, up-regulated unfolded protein response genes, and finally, exacerbated diet-induced diabetes in mice. Subsequent mass spectrometry studies revealed increased C16:0 ceramide accumulation in islets of diet-induced diabetes mice lacking β cell FIT2. Inhibition of ceramide synthases ameliorated the enhanced ER stress and improved insulin secretion. FIT2 was reduced in mouse diabetic islets, and separately, overexpression of FIT2 increased the number of intracellular LDs and rescued SFA-induced ER stress and apoptosis, thereby highlighting the protective role of FIT2 and LDs against β cell lipotoxicity.