期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:11
DOI:10.1073/pnas.2112008119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Hepatitis C virus chronically infects approximately 1% of the world’s population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Hepatitis C virus (HCV) is a global disease burden, and a preventive vaccine is needed to control or eradicate the virus. Despite the advent of effective antiviral therapy, this treatment is not accessible to many patients and does not prevent reinfection, making chronic hepatitis C an ongoing global health problem. Thus, development of a prophylactic vaccine will represent a significant step toward global eradication of HCV. HCV exhibits high genetic variability, which leads frequently to immune escape. However, a considerable challenge faced in HCV vaccine development is designing an antigen that elicits broadly neutralizing antibodies. Here, we characterized the immunogenicity of a vaccine based on a soluble, secreted form of the E1E2 envelope heterodimer (sE1E2.LZ). Sera from mice immunized with sE1E2.LZ exhibited an anti-E1E2–specific response comparable to mice immunized with membrane-bound E1E2 (mbE1E2) or a soluble E2 ectodomain (sE2). In competition-inhibition ELISA using antigenic domain-specific neutralizing and nonneutralizing antibodies, sera from sE1E2.LZ-immunized mice showed nearly identical or stronger competition toward neutralizing antibodies when compared with mbE1E2. In contrast, sera from mice immunized with sE2, and to a lesser extent mbE1E2, competed more effectively with nonneutralizing antibodies. An assessment of neutralization activity using both HCV pseudoparticles and cell culture–derived infectious HCV showed that immunization with sE1E2.LZ elicited the broadest neutralization activity of the three antigens, and sE1E2.LZ induced neutralization activity against all genotypes. These results indicate that our native-like soluble glycoprotein design, sE1E2.LZ, induces broadly neutralizing antibodies and serves as a promising vaccine candidate for further development.
关键词:enhepatitis C virusE1E2 envelope glycoproteinssecretedvaccine