期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:11
DOI:10.1073/pnas.2106053119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Deep profiling of the plasma proteome at scale has been a challenge for traditional approaches. We achieve superior performance across the dimensions of precision, depth, and throughput using a panel of surface-functionalized superparamagnetic nanoparticles in comparison to conventional workflows for deep proteomics interrogation. Our automated workflow leverages competitive nanoparticle–protein binding equilibria that quantitatively compress the large dynamic range of proteomes to an accessible scale. Using machine learning, we dissect the contribution of individual physicochemical properties of nanoparticles to the composition of protein coronas. Our results suggest that nanoparticle functionalization can be tailored to protein sets. This work demonstrates the feasibility of deep, precise, unbiased plasma proteomics at a scale compatible with large-scale genomics enabling multiomic studies.
Deep interrogation of plasma proteins on a large scale is a challenge due to the number and concentration of proteins, which span a dynamic range of over 10 orders of magnitude. Current plasma proteomics workflows employ labor-intensive protocols combining abundant protein depletion and sample fractionation. We previously demonstrated the superiority of multinanoparticle (multi-NP) coronas for interrogating the plasma proteome in terms of proteome depth compared to simple workflows. Here we show the superior depth and precision of a multi-NP workflow compared to conventional deep workflows evaluating multiple gradients and search engines as well as data-dependent and data-independent acquisition. We link the physicochemical properties and surface functionalization of NPs to their differential protein selectivity, a key feature in NP panel profiling performance. We find that individual proteins and protein classes are differentially attracted by specific surface properties, opening avenues to design multi-NP panels for deep interrogation of complex biological samples.