首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:Kirigami-based metastructures with programmable multistability
  • 本地全文:下载
  • 作者:Xiao Zhang ; Jiayao Ma ; Mengyue Li
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:11
  • DOI:10.1073/pnas.2117649119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Different from most existing multistable structures whose multiple stable states are achieved through the combinational effect of bistable units, we invent a generic tristable kirigami cuboid. The three stable states have fundamentally distinct geometric configurations and chirality, and the transformation among them can be realized by tension/compression or clockwise/counterclockwise twist. Tessellating the units in series, a family of multistable metamaterials can be constructed, the mechanical behaviors of which are programmable by the unit geometry, the material of the elastic joints, the number of units, and the loading conditions. As a demonstration of the potential applications, a frequency reconfigurable antenna for 5G triple-band communication is developed based on a tristable unit, and the frequency tunability is verified by experiments. Multistability plays an important role in advanced engineering applications such as metastructures, deployable structures, and reconfigurable robotics. However, most existing multistability design is based on the two-dimensional (2D)/3D series or parallel combinations of bistable unit cells, which are derived from snap-through instability, nonrigid foldable origami structures, and compliant mechanism, due to the lack of a generic multistable unit cell. Here, we develop a tristable kirigami cuboid by creating a set of elastic joints only effective in a specific motion range which integrates the elastic sheets and switchable hinge axes inspired by the kinematic behaviors of a kirigami cuboid with thick facets. The energy barriers between the stable states can be programmed by the geometric design parameters and material properties of the elastic joints. Taking the tristable cuboid as a unit cell, we construct a family of metastructures with multiple stable states. The number of stable states, the combination of unit stable states, and their transform sequences can be programmed by the number of unit cells, unit design parameters, and loading modes and loading sequences. We also apply this tristable cuboid to the design of frequency reconfigurable antenna with three programmable working frequencies, which demonstrates that such versatile multistability and structural diversity facilitate the development of multifunctional materials and devices.
  • 关键词:enkirigami cuboidmultistabilitymetastructureprogrammability
国家哲学社会科学文献中心版权所有