首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Activation of the UPR sensor ATF6α is regulated by its redox-dependent dimerization and ER retention by ERp18
  • 本地全文:下载
  • 作者:Ojore Benedict Valentine Oka ; Arvin Shedrach Pierre ; Marie Anne Pringle
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:12
  • DOI:10.1073/pnas.2122657119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Membrane and secretory proteins are synthesized in the endoplasmic reticulum (ER). Perturbations to ER function disrupts protein folding, causing misfolded proteins to accumulate, a condition known as ER stress. Cells adapt to stress by activating the unfolded protein response (UPR), which ultimately restores proteostasis. A key player in the UPR response is ATF6α, which requires release from ER retention and modulation of its redox status during activation. Here, we report that ER stress promotes formation of a specific ATF6α dimer, which is preferentially trafficked to the Golgi for processing. We show that ERp18 regulates ATF6α by mitigating its dimerization and trafficking to the Golgi and identify redox-dependent oligomerization of ATF6α as a key mechanism regulating its function during the UPR. The unfolded protein response (UPR) maintains cellular proteostasis during stress by activating sensors located to the endoplasmic reticulum (ER) membrane. A major sensor for this response, ATF6α, is activated by release from ER retention and trafficking to the Golgi, where it is cleaved to generate a bZIP transactivator to initiate a transcriptional response. The reduction of a disulfide in monomeric ATF6α is thought to be necessary for release from retention, trafficking, and proteolysis. Here we show that, following ER stress, ATF6α undergoes a redox switch to form a disulfide bonded dimer, which traffics to the Golgi for cleavage by the S1P protease. Additionally, we find that overexpression of ERp18 attenuates dimer formation thereby limiting Golgi trafficking. Our results provide mechanistic insight into activation of the ATF6α pathway, revealing an unexpected role for redox-dependent oligomerization prior to Golgi trafficking.
  • 关键词:enER stressunfolded protein responseATF6proteostasis
国家哲学社会科学文献中心版权所有