摘要:With growth of confectionery industry, there is a great demand for candy shape, and 3D printing technology is way to achieve it. The printing properties of gummy, which is formed of gelatin and low acyl gellan as gel, maltol, erythritol, sorbitol, and xylitol as sweeteners, were tested in this study. Gummies’ rheological properties, 3D printing properties, and textural qualities were measured using a rheometer, FTIR, and SEM in this study. The strength of the hydrogen bonds will be affected by the addition of polyol, after which the excluded volume effect of polyol and viscosity will become the most important aspect. Polyols increased the gelation temperature (Tgelation), improved the gel network, and improved hydrogen bonding in the gel, according to the findings. Yield stress, shear recovery performance, and gel strength were initially increased, then decreased, when polyol concentration was increased. It had a 40.59 °C gelation temperature, an 82.99% recovery rate, noticeable shear thinning features, high self-supporting performance, and textural qualities when ink with 35 g maltitol and 30 g erythritol gave the best printing performance. This research serves as a foundation for the development of individualized, bespoke 3D printed gummies in the future.