首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:PREDICTION OF FOREST FIRE USING NEURAL NETWORKS WITH BACKPROPAGATION LEARNING AND EXREME LEARNING MACHINE APPROACH USING METEOROLOGICAL AND WEATHER INDEX VARIABLES
  • 本地全文:下载
  • 作者:Dedi Rosadi ; Deasy Arisanty ; Dina Agustina
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2022
  • 卷号:14
  • 期号:2
  • 页码:118-124
  • DOI:10.14710/medstat.14.2.118-124
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:Forest fire is one of important catastrophic events and have great impact on environment, infrastructure and human life. In this study, we discuss the method for prediction of the size of the forest fire using the hybrid approach between Fuzzy-C-Means clustering (FCM) and Neural Networks (NN) classification with backpropagation learning and extreme learning machine approach. For comparison purpose, we consider a similar hybrid approach, i.e., FCM with the classical Support Vector Machine (SVM) classification approach. In the empirical study, we apply the considered methods using several meteorological and Forest Weather Index (FWI) variables. We found that the best approach will be obtained using hybrid FCM-SVM for data training, where the best performance obtains for hybrid FCM-NN-backpropagation for data testing.
国家哲学社会科学文献中心版权所有