首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Stochastic Optimization Method for Energy Storage System Configuration Considering Self-Regulation of the State of Charge
  • 本地全文:下载
  • 作者:Delong Zhang ; Yiyi Ma ; Jinxin Liu
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:1
  • 页码:553
  • DOI:10.3390/su14010553
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Photovoltaic (PV) power generation has developed rapidly in recent years. Owing to its volatility and intermittency, PV power generation has an impact on the power quality and operation of the power system. To mitigate the impact caused by the PV generation, an energy storage (ES) system is applied to the PV plants. The capacity configuration and control strategy based on the stochastic optimization method have become an important research topic. However, the accuracy of the probability distribution model is insufficient and a stochastic optimization method is rarely used in a control strategy. In this paper, a stochastic optimization method for the energy storage system (ESS) configuration considering the self-regulation of the battery state of charge (SoC) is proposed. Firstly, to reduce the sampling error when typical scenarios of PV power are generated, a time-divided probability distribution model of the ultra-short-term predicted error of PV power is established. On this basis, to solve the problem that SoC reaches the threshold frequently, a self-regulation model of the SoC based on multiple scenarios is established, which can regulate the SoC according to rolling PV power prediction. A stochastic optimization configuration model of the energy storage system is constructed, which can reduce the impact of PV uncertainty on the configuration result. Finally, the proposed stochastic optimization method is validated. The fitting error of the time-divided probability distribution model is 15.61% lower than that of the t-distribution. The expected revenue of the optimal configuration in this paper is 8.86% higher than the scheme with a fixed probability distribution model, and 16.87% higher than without considering the stochastic optimization method.
国家哲学社会科学文献中心版权所有