摘要:Conversion of residual algal biomass to value-added products is essential for enhancing the economics of algae cultivation. Algal hydrochar produced via hydrothermal carbonization of lipid-extracted Picochlorum oculatum is a material rich in oxygen functional groups and carbon (up to 67.3%) and hence a promising candidate for remediation of wastewaters. The hydrothermal carbonization conditions were optimized and the adsorption capacity of the hydrochar was tested for metal removal. By the end of the remediation process, cumulative removal of Al3+, Cu2+, Fe2+, Mg2+, Mn2+, and Pb2+ reached 89, 98, 75, 88, 75, and 100%, respectively. The adsorption of all metals was found to follow pseudo second-order kinetics and the Langmuir isotherm. Overall, when hydrothermal carbonization is applied to lipid-extracted algae, it generates a promising biobased adsorbent with value-added potential in metal remediation.