首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Observing multifarious topological phase transitions with real-space indicator
  • 本地全文:下载
  • 作者:Lu Yong-Heng ; Lu Yong-Heng ; Wang Yao
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:153-160
  • DOI:10.1515/nanoph-2021-0559
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:First- and second-order topological phases, capable of inherent protection against disorder of materials, have been recently experimentally demonstrated in various artificial materials through observing the topologically protected edge states. Topological phase transition represents a new class of quantum critical phenomena, which is accompanied by the changes related to the bulk topology of energy band structures instead of symmetry. However, it is still a challenge to directly observe the topological phase transitions defined in terms of bulk states. Here, we theoretically and experimentally demonstrate the direct observation of multifarious topological phase transitions with real-space indicator in a single photonic chip, which is formed by integration of 324 × 33 waveguides supporting both first- and second-order topological phases. The trivial-to-first-order, trivial-to-second-order and first-to-second-order topological phase transitions signified by the band gap closure can all be directly detected via photon evolution in the bulk. We further observe the creation and destruction of gapped topological edge states associated with these topological phase transitions. The bulk-state-based route to investigate the high-dimensional and high-order topological features, together with the platform of freely engineering topological materials by three-dimensional laser direct writing in a single photonic chip, opens up a new avenue to explore the mechanisms and applications of artificial devices.
国家哲学社会科学文献中心版权所有