首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures
  • 本地全文:下载
  • 作者:Sun Feiying ; Sun Feiying ; Nie Changbin
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2021
  • 卷号:10
  • 期号:16
  • 页码:3957-3965
  • DOI:10.1515/nanoph-2021-0279
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Two-dimensional (2D) materials with excellent optical properties and complementary metal-oxide-semiconductor (CMOS) compatibility have promising application prospects for developing highly efficient, small-scale all-optical modulators. However, due to the weak nonlinear light-material interaction, high power density and large contact area are usually required, resulting in low light modulation efficiency. In addition, the use of such large-band-gap materials limits the modulation wavelength. In this study, we propose an all-optical modulator integrated Si waveguide and single-layer MoS2 with a plasmonic nanoslit, wherein modulation and signal light beams are converted into plasmon through nanoslit confinement and together are strongly coupled to 2D MoS2. This enables MoS2 to absorb signal light with photon energies less than the bandgap, thereby achieving high-efficiency amplitude modulation at 1550 nm. As a result, the modulation efficiency of the device is up to 0.41 dB μm−1, and the effective size is only 9.7 µm. Compared with other 2D material-based all-optical modulators, this fabricated device exhibits excellent light modulation efficiency with a micron-level size, which is potential in small-scale optical modulators and chip-integration applications. Moreover, the MoS2-plasmonic nanoslit modulator also provides an opportunity for TMDs in the application of infrared optoelectronics.
国家哲学社会科学文献中心版权所有