首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Bathymetric Survey of the St. Anthony Channel (Croatia) Using Multibeam Echosounders (MBES)—A New Methodological Semi-Automatic Approach of Point Cloud Post-Processing
  • 本地全文:下载
  • 作者:Ante Šiljeg ; Ivan Marić ; Fran Domazetović
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:1
  • 页码:101
  • DOI:10.3390/jmse10010101
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Multibeam echosounders (MBES) have become a valuable tool for underwater floor mapping. However, MBES data are often loaded with different measurement errors. This study presents a new user-friendly and methodological semi-automatic approach of point cloud post-processing error removal. The St. Anthony Channel (Croatia) was selected as the research area because it is regarded as one of the most demanding sea or river passages in the world and it is protected as a significant landscape by the Šibenik-Knin County. The two main objectives of this study, conducted within the Interreg Italy–Croatia PEPSEA project, were to: (a) propose a methodological framework that would enable the easier and user-friendly identification and removal of the errors in MBES data; (b) create a high-resolution integral model (MBES and UAV data) of the St. Anthony Channel for maritime safety and tourism promotion purposes. A hydrographic survey of the channel was carried out using WASSP S3 MBES while UAV photogrammetry was performed using Matrice 210 RTK V2. The proposed semi-automatic post-processing of the MBES acquired point cloud was completed in the Open Source CloudCompare software following five steps in which various point filtering methods were used. The reduction percentage in points after the denoising process was 14.11%. Our results provided: (a) a new user-friendly methodological framework for MBES point filtering; (b) a detailed bathymetric map of the St. Anthony Channel with a spatial resolution of 50 cm; and (c) the first integral (MBES and UAV) high-resolution model of the St. Anthony Channel. The generated models can primarily be used for maritime safety and tourism promotion purposes. In future research, ground-truthing methods (e.g., ROVs) will be used to validate the generated models.
国家哲学社会科学文献中心版权所有