摘要:The sailing efficiency of an underwater glider, an important type of marine environment detection and data collection equipment, directly affects its range and duration. The zero-angle-of-attack gliding can be achieved by adjusting the wing installation angle to minimize the drag and improve the sailing efficiency, and thus further improving performance of the glider. This paper first presents the dynamic characteristics of a hybrid-driven underwater glider with a certain wing installation angle when it is sailing at zero angle of attack in buoyancy-driven mode and hybrid-driven mode. In buoyancy-driven mode, with a given wing installation angle, the glider can achieve zero-angle-of-attack gliding only at a specific glide angle. In hybrid-driven mode, due to the use of a propulsion system, the specific glide angle that allows the zero-angle-of-attack gliding in buoyancy-driven mode is expanded to a glide angle range bounded by zero degrees. Then, the energy consumption per meter is introduced as an indicator of sailing efficiency, and the effects of glide angle and wing installation angle on sailing efficiency of the zero-angle-of-attack glider in two driving modes are studied under the conditions of given net buoyancy and given speed, respectively. Accordingly, the optimal wing installation angle for maximizing the sailing efficiency is proposed. Theoretical analysis shows that the sailing efficiency of a zero-angle-of-attack glider can be higher than that of a traditional glider. Considering the requirements of different measurement tasks, a higher sailing efficiency can be achieved by setting reasonable parameters and selecting the appropriate driving mode.