首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:1-Deoxysphinganine initiates adaptive responses to serine and glycine starvation in cancer cells via proteolysis of sphingosine kinase
  • 本地全文:下载
  • 作者:Jean-Philip Truman ; Christian F. Ruiz ; Emily Montal
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2022
  • 卷号:63
  • 期号:1
  • 页码:100154
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Cancer cells may depend on exogenous serine, depletion of which results in slower growth and activation of adaptive metabolic changes. We previously demonstrated that serine and glycine (SG) deprivation causes loss of sphingosine kinase 1 (SK1) in cancer cells, thereby increasing the levels of its lipid substrate, sphingosine (Sph), which mediates several adaptive biological responses. However, the signaling molecules regulating SK1 and Sph levels in response to SG deprivation have yet to be defined. Here, we identify 1-deoxysphinganine (dSA), a noncanonical sphingoid base generated in the absence of serine from the alternative condensation of alanine and palmitoyl CoA by serine palmitoyl transferase, as a proximal mediator of SG deprivation in SK1 loss and Sph level elevation upon SG deprivation in cancer cells. SG starvation increased dSA levels in vitro and in vivo and in turn induced SK1 degradation through a serine palmitoyl transferase-dependent mechanism, thereby increasing Sph levels. Addition of exogenous dSA caused a moderate increase in intracellular reactive oxygen species, which in turn decreased pyruvate kinase PKM2 activity while increasing phosphoglycerate dehydrogenase levels, and thereby promoted serine synthesis. We further showed that increased dSA induces the adaptive cellular and metabolic functions in the response of cells to decreased availability of serine likely by increasing Sph levels. Thus, we conclude that dSA functions as an initial sensor of serine loss, SK1 functions as its direct target, and Sph functions as a downstream effector of cellular and metabolic adaptations. These studies define a previously unrecognized “physiological” nontoxic function for dSA.
国家哲学社会科学文献中心版权所有