标题:Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains
摘要:Cool road pavements contribute to mitigating urban heat islands. To evaluate the heat balance in paved surfaces and to select appropriate road construction materials that help suppress heat islands, an accurate understanding of heat transport parameters such as thermal conductivity (λ) and heat capacity (HC) is important. Recycled aggregates from construction and demolition waste, including scrap construction materials and industrial by-products, are often used for road construction; however, λ and HC of recycled aggregates especially for roadbeds are not fully understood. This study involved a series of laboratory tests to measure λ and HC of recycled concrete and clay brick aggregates (<40 mm) and their mixtures with autoclaved aerated concrete grains (<2 mm) under varied moisture conditions. The measured λ and HC increased with increasing volumetric water content (θ). Closed-form models for estimating λ(θ) were proposed using normalized thermal conductivity (λe) and effective saturation (Se). The new λe(Se) models performed well for the measured data compared to previously proposed models and would be useful to evaluate λ of recycled aggregates for roadbed materials.