首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Computability, Notation, and de re Knowledge of Numbers
  • 本地全文:下载
  • 作者:Stewart Shapiro ; Eric Snyder ; Richard Samuels
  • 期刊名称:Philosophies
  • 印刷版ISSN:2409-9287
  • 出版年度:2022
  • 卷号:7
  • 期号:1
  • 页码:20
  • DOI:10.3390/philosophies7010020
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Saul Kripke once noted that there is a tight connection between computation and de re knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can produce knowledge of which number is the greatest common divisor of two numbers. Arguably, algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via how the numbers are represented. So we broach matters of notation. The purpose of this article is to explore the relationship between the notations acceptable for computation, the usual idealizations involved in theories of computability, flowing from Alan Turing’s monumental work, and de re propositional attitudes toward numbers and other mathematical objects.
国家哲学社会科学文献中心版权所有