首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Evaluation of Drifting Snow Susceptibility Based on GIS and GA-BP Algorithms
  • 本地全文:下载
  • 作者:Bohu He ; Mingzhou Bai ; Binglong Liu
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2022
  • 卷号:11
  • 期号:2
  • 页码:142
  • DOI:10.3390/ijgi11020142
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Drifting snow, the flow of dispersed snow particles near ground level under the action of wind, is a major form of snow damage. When drifting snow occurs on railways, highways, and other transportation lines, it seriously affects their operational safety and results in drifting snow disasters. Drifting snow disasters frequently occur in the high latitudes of northwest China. At present, most scholars are committed to studying the prevention and control measures of drifting snow, but the prerequisite for prevention is to effectively evaluate the susceptibility of drifting snow along railways and highways to identify areas with a high risk of occurrence. Taking the Xinjiang Afukuzhun Railway as an example, this study uses a geographic information system (GIS) combined with on-site monitoring and surveys to establish a drifting snow susceptibility evaluation index system. The drifting snow susceptibility index (DSSI) is calculated through the weight of an evidence (WOE) model, and a genetic algorithm backpropagation (GA-BP) algorithm is used to obtain optimised evaluation index weights to improve the accuracy of model evaluation. The results show that the accuracies of the WOE model, WOE backpropagation (WOE-BP) model, and weight of evidence genetic algorithm backpropagation (WOE-GA-BP) model are 0.747, 0.748, and 0.785, respectively, indicating that the method can be effectively applied to evaluate drifting snow susceptibility.
国家哲学社会科学文献中心版权所有