期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2022
卷号:11
期号:2
页码:110
DOI:10.3390/ijgi11020110
语种:English
出版社:MDPI AG
摘要:The spatial–temporal simulation of fire disasters and evacuation route planning are important research fields for urban emergency responses and are primary tasks that answer complex questions after fires break out. The increasing demand for refined building information models will sharply increase the calculated and analyzed quantity. This demand presents a challenge for fire emergency responses based on massive building information. In this paper, the principle of the realistic worst case (RWC) is introduced into fire simulation and evacuation route planning. Taking the library of the Nanjing Forestry University as the study object, the spatial–temporal characteristics of the influential environmental factors of the fire are simulated, such as the meteorological elements, building structure, and building skin. The scenario zones that are relatively prone to fire are selected using an overlay analysis across the four seasons. Then, the risk threshold for evacuating personnel is analyzed in the fire zone according to international standards and firefighting criteria. Specific parameters are determined based on the analysis of the above. The growing trends for fires across the four seasons are simulated with scenario zones as the starting positions and incorporate factors such as temperature, carbon monoxide, and smoke. Lastly, a life safety assurance path (LSAP) for personnel evacuation is designed based on an indoor road network and path search algorithm. The evacuation planning result is compared with the traditional shortest-time path and shortest-distance path. Based on the study results, fire scenario zones can improve the speed and operating efficiency of spatial–temporal simulation models of fire and can also support path planning and design for emergency responses.