首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Effect of Thaw Depth on Nitrogen and Phosphorus Loss in Runoff of Loess Slope
  • 本地全文:下载
  • 作者:Feichao Wang ; Zhanbin Li ; Yuting Cheng
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • 页码:1560
  • DOI:10.3390/su14031560
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Seasonal freeze-thaw erosion is a form of soil erosion caused by the topographical characteristics and climatic factors of the hilly and gully loess regions. Seasonal freeze-thaw can damage the soil pores and cause its bulk density to change. The effects of thawing depth on runoff and Nitrogen and Phosphorus loss on the rainfall erosion of an artificial slope filled with loess soil were analyzed after a rainfall test that simulated the spring thaw period in China. The results showed that: (1) The maximum runoff yield was 33.35 mm at 4 cm thawing depth, and the minimum was 12.95 mm at 6 cm thawing depth. With the increase in runoff time, the slope infiltration rate had a decreasing trend. The loss rate of available and total Phosphorus increased with the increase in runoff rate. The rate of increase was fastest when the thawing depth was 4 cm. (2) The relationships between runoff rate and Nitrogen loss and Phosphorus loss rate can be explained by linear regression equations, and the loss rate increased as the runoff rate rose for all thawing depths. Within the 0–6 cm thawing depths, the loss of total phosphorus was the largest when the thawing depth was 4 cm, and the loss of available phosphorus was the smallest when the thawing depth was 6 cm. At the shallower thawing depths, the available Nitrogen loss represented a smaller proportion of the total Nitrogen loss compared to nitrate Nitrogen loss. However, there was a gradual rise in the available Nitrogen proportion in the total amount of inorganic Nitrogen as the thawing depth increased. (3) Total Phosphorus was the available Phosphorus with a quadratic function relationship with runoff energy and runoff power. Runoff energy mainly affected the total Nitrogen and available Nitrogen loss in runoff, whereas runoff power mainly affected total Nitrogen loss in runoff. The results of this paper can improve the understanding of runoff and Nitrogen and Phosphorus loss caused by runoff during freeze-thaw conditions.
国家哲学社会科学文献中心版权所有