首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Evaluating Evaporative Cooling Assisted Solid Desiccant Dehumidification System for Agricultural Storage Application
  • 本地全文:下载
  • 作者:Ghulam Hussain ; Muhammad Aleem ; Muhammad Sultan
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • 页码:1479
  • DOI:10.3390/su14031479
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The study aims to investigate Maisotsenko cycle evaporative cooling assisted solid desiccant air-conditioning (M-DAC) system for agricultural storage application. Conventional air-conditioning (AC) systems used for this application are refrigeration-based which are expensive as they consume excessive amount of primary-energy. In this regard, the study developed a lab-scale solid silica gel-based desiccant AC (DAC) system. Thermodynamic performance of the developed system was investigated using various adsorption/dehumidification and desorption/regeneration cycles. The system possesses maximum adsorption potential i.e., 4.88 g/kg-DA at higher regeneration temperature of 72.6 °C and long cycle time i.e., 60 min:60 min. Moreover, the system’s energy consumption performance was investigated from viewpoints of maximum latent, sensible, and total heat as well as latent heat ratio (LHR), which were found to be 0.64 kW, 1.16 kW, and 1.80 kW, respectively with maximum LHR of 0.49. Additionally, the study compared standalone DAC (S-DAC), and M-DAC system thermodynamically to investigate the feasibility of these systems from the viewpoints of temperature and relative humidity ranges, cooling potential (Qp), and coefficient of performance (COP). The S-DAC system showed temperature and relative humidity ranging from 39 °C to 48 °C, and 35% to 66%, respectively, with Qp and COP of 17.55 kJ/kg, and 0.37, respectively. Conversely, the M-DAC system showed temperature and relative humidity ranging from 17 °C to 25 °C, and 76% to 98%, respectively, with Qp and COP of 41.80 kJ/kg, and 0.87, respectively. Additionally, the study investigated respiratory heat generation rate (Qres), and heat transfer rate (Qrate) by agricultural products at different temperature gradient (∆T) and air velocity. The Qres and Qrate by the products were increased with ∆T and air velocity, respectively, thereby generating heat loads in the storage house. Therefore, the study suggests that the M-DAC system could be a potential AC option for agricultural storage application.
国家哲学社会科学文献中心版权所有