首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Silicon Fertigation Regimes Attenuates Cadmium Toxicity and Phytoremediation Potential in Two Maize (Zea mays L.) Cultivars by Minimizing Its Uptake and Oxidative Stress
  • 本地全文:下载
  • 作者:Muhammad Hamzah Saleem ; Abida Parveen ; Shahid Ullah Khan
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • 页码:1462
  • DOI:10.3390/su14031462
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Silicon (Si) is an important plant-derived metabolite that is significantly involved in maintaining the stability of a plant’s metabiological, structural and physiological characteristics under the abiotic stressed environment. We conducted the present study using maize (Zea mays L.) cultivars (Sadaf and EV-20) grown in sand artificially contaminated with cadmium (500 µM) in Hoagland’s nutrient solution to investigate its efficiency. Results from the present study evidenced that the toxic concentration of Cd in sand significantly reduced shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight by 88, 94, 89, 86 99 and 99%, respectively, in Sadaf while decreasing by 98, 97, 93, 99, 84 and 91%, respectively, in EV-20. Similarly, Cd toxicity decreased total chlorophyll and carotenoid content in both varieties of Z. mays. Moreover, the activities of various antioxidants (superoxidase dismutase, peroxidase and catalase) increased under the toxic concentration of Cd in sand which was manifested by the presence of membrane permeability, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Results additionally showed that the toxic effect of Cd was more severe in EV-20 compared with Sadaf under the same conditions of environmental stresses. In addition, the increased concentration of Cd in sand induced a significantly increased Cd accumulation in the roots (141 and 169 mg kg−1 in Sadaf and EV-20, respectively), and shoots (101 and 141 mg kg−1 in Sadaf and EV-20, respectively), while; EV-20 accumulated higher amounts of Cd than Sadaf, with the values for both bioaccumulation factor (BAF) and translocation factor (TF) among all treatments being less than 1. The subsequent negative results of Cd injury can be overcome by the foliar application of Si which not only increased plant growth and biomass, but also decreased oxidative damage induced by the higher concentrations of MDA and H2O2 under a Cd-stressed environment. Moreover, external application of Si decreased the concentration of Cd in the roots and shoots of plants, therefore suggesting that the application of Si can ameliorate Cd toxicity in Z. mays cultivars and results in improved plant growth and composition under Cd stress by minimizing oxidative damage to membrane-bound organelles.
国家哲学社会科学文献中心版权所有