首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Life Cycle Assessment (LCA) of the Use of Metallurgical Process Gas for Heat and Electricity, Combined with Salt Removal from Discarded Water
  • 本地全文:下载
  • 作者:Magdalena Bogacka ; Tomasz Iluk ; Krzysztof Pikoń
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • 页码:1205
  • DOI:10.3390/su14031205
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The subject of the article is the assessment of the environmental impact of the technology concerning the use of low-quality post-process gas for the production of electricity and heat, along with the treatment of post-process wastewater. This assessment was carried out based on the results of the full life cycle assessment (LCA) analysis. The presented technology is based on the energetic use of low-quality process gases in a reciprocating engine for the production of electricity and heat in cogeneration with the use of heat in the wastewater treatment system. The article presents the adopted assumptions and the results of the LCA analysis for the RECLEG technology developed specifically for a zinc smelter. The aim of the analysis was to check whether the developed technology has a positive impact on the environment. The LCA analysis was performed using the ReCiPe methodology, which is one of the most frequently used methodologies in this field due to the possibility of observing the environmental impact in a full range of different environmental aspects. At the same time, the analysis also allows the results to be presented in three general impact categories: human health, ecosystem and natural resources, which are easier to interpret. By converting the waste post-process gas into electricity and heat, it is seen that this has a positive impact on the environment. Especially due to the waste nature of the source, which is the post-process gas. Each reduction of gas is potentially beneficial for the environment and, in addition, a replacement effect can be observed, because the gas was previously burned in a flare, where it additionally emitted exhaust gases, sent directly to the atmosphere. Moreover, the RECLEG technology combines post-process wastewater treatment, which has a positive effect on water management, and makes the process even more environmentally friendly.
国家哲学社会科学文献中心版权所有