首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Classificação Baseada em Objeto de Tipologias de Cobertura Vegetal em Área Úmida Integrando Imagens Ópticas e SAR
  • 本地全文:下载
  • 作者:Tassia Fraga Belloli ; Laurindo Antonio Guasselli ; Tatiana Kuplich
  • 期刊名称:Revista Brasileira de Cartografia
  • 印刷版ISSN:0560-4613
  • 电子版ISSN:1808-0936
  • 出版年度:2022
  • 卷号:74
  • 期号:1
  • 语种:English
  • 出版社:Sociedade Brasileira Cartografia - Geodesia
  • 摘要:Delinear com precisão os limites das Áreas Úmidas (AUs) e os padrões de cobertura vegetal é um passo essencial para a rápida avaliação e gestão destes ecossistemas. A Análise de Imagens Baseada em Objeto (Object-Based Image Analysis - OBIA) a partir de aprendizado de máquina e da integração de dados ópticos e de radar apresentam vantagens em relação a outras técnicas no mapeamento da cobertura vegetal nos ecossistemas de AUs. Este estudo tem como objetivo classificar tipologias de cobertura vegetal em áreas úmidas, integrando imagens ópticas e SAR dos satélites Sentinel-1 e 2A e o algoritmo Random Forest à classificação OBIA, utilizando como estudo de caso o Banhado Grande, localizado no Rio Grande do Sul. Como resultados, as polarizações VH e VV do Sentinel-1 obtiveram a maior relevância na classificação (18,6%). Entre as bandas ópticas as maiores relevâncias ocorreram para as bandas Borda Vermelha e Infravermelho Médio. A partir dos atributos ópticos, a classificação obteve acurácia de 86,2%. Quando inseridos os atributos SAR mais importantes, a acurácia aumentou para 91,3%. A classe Macrófitas Emergentes (ME), correspondente à espécie Scirpus giganteus, alcançou a melhor acurácia (91%), com área estimada em 1.507 ha. Concluímos que a integração de imagens aliada ao método de classificação possibilitou identificar e delimitar a extensão das tipologias vegetais e a área total do ecossistema. Os resultados acurados demostram que esta abordagem metodológica pode ser expandida para outras áreas úmidas palustres subtropicais.
国家哲学社会科学文献中心版权所有