首页    期刊浏览 2025年08月21日 星期四
登录注册

文章基本信息

  • 标题:Quantum Query Complexity with Matrix-Vector Products
  • 本地全文:下载
  • 作者:Childs, Andrew M. ; Hung, Shih-Han ; Li, Tongyang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.55
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that it specifies, quantum computers do not provide an asymptotic speedup over classical computation. On the other hand, we show that for some problems, such as computing the parities of rows or columns or deciding if there are two identical rows or columns, quantum computers provide exponential speedup. We demonstrate this by showing equivalence between models that provide matrix-vector products, vector-matrix products, and vector-matrix-vector products, whereas the power of these models can vary significantly for classical computation.
  • 关键词:Quantum algorithms;quantum query complexity;matrix-vector products
国家哲学社会科学文献中心版权所有