首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Using a Geometric Lens to Find k Disjoint Shortest Paths
  • 本地全文:下载
  • 作者:Bentert, Matthias ; Nichterlein, André ; Renken, Malte
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.26
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given an undirected n-vertex graph and k pairs of terminal vertices (s_1,t_1), …, (s_k,t_k), the k-Disjoint Shortest Paths (k-DSP) problem asks whether there are k pairwise vertex-disjoint paths P_1, …, P_k such that P_i is a shortest s_i-t_i-path for each i ∈ [k]. Recently, Lochet [SODA '21] provided an algorithm that solves k-DSP in n^{O(k^{5^k})} time, answering a 20-year old question about the computational complexity of k-DSP for constant k. On the one hand, we present an improved O(kn^{16k ⋅ k! + k + 1})-time algorithm based on a novel geometric view on this problem. For the special case k = 2, we show that the running time can be further reduced to O(nm) by small modifications of the algorithm and a further refined analysis. On the other hand, we show that k-DSP is W[1]-hard with respect to k, showing that the dependency of the degree of the polynomial running time on the parameter k is presumably unavoidable.
  • 关键词:graph algorithms;dynamic programming;W[1]-hardness;geometry
国家哲学社会科学文献中心版权所有